Neurons synthesizing melanin-concentrating hormone identified by selective reporter gene expression after transfection in vitro: transmitter responses.
نویسندگان
چکیده
Neurons from the lateral hypothalamus that synthesize melanin-concentrating hormone (MCH) play an important role in the regulation of energy homeostasis. Relatively little is known of the cellular physiology and transmitter responses of these neurons, in part because of the difficulty in identifying live MCH cells. Here we use a novel approach of transfection of specific gene constructs with the MCH promoter driving green fluorescent protein (GFP) or red fluorescent protein (dsRed2) in CNS cultures to identify live rat MCH neurons; all neurons expressing the reporter gene showed MCH immunoreactivity, indicating selective expression. MCH neurons had a resting membrane potential of -57.5 +/- 0.6 mV, a linear current-voltage relation and a mean input resistance of 1,013 MOmega. Long depolarizing pulses revealed significant spike frequency adaptation. Functional glutamate and GABA receptors were expressed by MCH neurons. MCH neurons were hyperpolarized by norepinephrine in the presence or absence of tetrodotoxin, suggesting direct inhibition. Orexigenic peptides neuropeptide Y (NPY) and MCH showed no direct effect on membrane potential, input resistance, action potential width, or afterhyperpolarization potential, but inhibited voltage-dependent calcium channels, indicating that MCH neurons expressed both MCH and NPY receptors.
منابع مشابه
Physiological Properties of Hypothalamic MCH Neurons Identified with Selective Expression of Reporter Gene after Recombinant Virus Infection
Neurons that synthesize melanin-concentrating hormone (MCH) may modulate arousal and energy homeostasis. The scattered MCH neurons have been difficult to study, as they have no defining morphological characteristics. We have developed a viral approach with AAV for selective long-term reporter gene (GFP) expression in MCH neurons, allowing the study of their cellular physiology in hypothalamic s...
متن کاملAn Alkaline Phosphatase Reporter Gene Assay for Induction of CYP3A4 In Vitro
CYP3A4 probably has the broadest catalytic activity of any cytochrome P450. It is a crucial task to test new drug candidates in a reliable system for their ability to induce expression of this enzyme. Firstly, a total of 300 bp core distal enhancer of CYP3A4 XREM region (-7972/-7673) were amplified from human genomic DNA. The PCR product was then ligated into a human secretory alkaline phosphat...
متن کاملAn Alkaline Phosphatase Reporter Gene Assay for Induction of CYP3A4 In Vitro
CYP3A4 probably has the broadest catalytic activity of any cytochrome P450. It is a crucial task to test new drug candidates in a reliable system for their ability to induce expression of this enzyme. Firstly, a total of 300 bp core distal enhancer of CYP3A4 XREM region (-7972/-7673) were amplified from human genomic DNA. The PCR product was then ligated into a human secretory alkaline phosphat...
متن کاملCholecystokinin and gut-brain signalling.
Enteroendocrine cells of the gastrointestinal tract act as a luminal surveillance system responding to either the presence or absence of food in the gut lumen. Collectively, their secretory products regulate the course of digestion and determine the delivery of nutrient to the gut by controlling food intake. Afferent neurons of the vagus nerve are an important target of gut hormones, particular...
متن کاملDiurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss
The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt) neurons are seen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2003